Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis ; 23(14): 7, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38127329

RESUMO

Stationarity perception refers to the ability to accurately perceive the surrounding visual environment as world-fixed during self-motion. Perception of stationarity depends on mechanisms that evaluate the congruence between retinal/oculomotor signals and head movement signals. In a series of psychophysical experiments, we systematically varied the congruence between retinal/oculomotor and head movement signals to find the range of visual gains that is compatible with perception of a stationary environment. On each trial, human subjects wearing a head-mounted display execute a yaw head movement and report whether the visual gain was perceived to be too slow or fast. A psychometric fit to the data across trials reveals the visual gain most compatible with stationarity (a measure of accuracy) and the sensitivity to visual gain manipulation (a measure of precision). Across experiments, we varied 1) the spatial frequency of the visual stimulus, 2) the retinal location of the visual stimulus (central vs. peripheral), and 3) fixation behavior (scene-fixed vs. head-fixed). Stationarity perception is most precise and accurate during scene-fixed fixation. Effects of spatial frequency and retinal stimulus location become evident during head-fixed fixation, when retinal image motion is increased. Virtual Reality sickness assessed using the Simulator Sickness Questionnaire covaries with perceptual performance. Decreased accuracy is associated with an increase in the nausea subscore, while decreased precision is associated with an increase in the oculomotor and disorientation subscores.


Assuntos
Movimentos da Cabeça , Realidade Virtual , Humanos , Movimento (Física) , Psicometria , Percepção
2.
Multisens Res ; 36(7): 703-724, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37903493

RESUMO

Head movement relative to the stationary environment gives rise to congruent vestibular and visual optic-flow signals. The resulting perception of a stationary visual environment, referred to herein as stationarity perception, depends on mechanisms that compare visual and vestibular signals to evaluate their congruence. Here we investigate the functioning of these mechanisms and their dependence on fixation behavior as well as on the active versus passive nature of the head movement. Stationarity perception was measured by modifying the gain on visual motion relative to head movement on individual trials and asking subjects to report whether the gain was too low or too high. Fitting a psychometric function to the data yields two key parameters of performance. The mean is a measure of accuracy, and the standard deviation is a measure of precision. Experiments were conducted using a head-mounted display with fixation behavior monitored by an embedded eye tracker. During active conditions, subjects rotated their heads in yaw ∼15 deg/s over ∼1 s. Each subject's movements were recorded and played back via rotating chair during the passive condition. During head-fixed and scene-fixed fixation the fixation target moved with the head or scene, respectively. Both precision and accuracy were better during active than passive head movement, likely due to increased precision on the head movement estimate arising from motor prediction and neck proprioception. Performance was also better during scene-fixed than head-fixed fixation, perhaps due to decreased velocity of retinal image motion and increased precision on the retinal image motion estimate. These results reveal how the nature of head and eye movements mediate encoding, processing, and comparison of relevant sensory and motor signals.


Assuntos
Movimentos Oculares , Percepção de Movimento , Humanos , Movimentos da Cabeça , Movimento (Física) , Propriocepção , Rotação
3.
Virtual Real ; 27(2): 1481-1505, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37621305

RESUMO

Eye tracking is becoming increasingly available in head-mounted virtual reality displays with various headsets with integrated eye trackers already commercially available. The applications of eye tracking in virtual reality are highly diversified and span multiple disciplines. As a result, the number of peer-reviewed publications that study eye tracking applications has surged in recent years. We performed a broad review to comprehensively search academic literature databases with the aim of assessing the extent of published research dealing with applications of eye tracking in virtual reality, and highlighting challenges, limitations and areas for future research.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36873792

RESUMO

VR sickness is a major concern for many users as VR continues its expansion towards widespread everyday use. VR sickness is thought to arise, at least in part, due to the user's intolerance of conflict between the visually simulated self-motion and actual physical movement. Many mitigation strategies involve consistently modifying the visual stimulus to reduce its impact on the user, but this individualized approach can have drawbacks in terms of complexity of implementation and non-uniformity of user experience. This study presents a novel alternative approach that involves training the user to better tolerate the adverse stimulus by tapping into natural adaptive perceptual mechanisms. In this study, we recruited users with limited VR experience that reported susceptibility to VR sickness. Baseline sickness was measured as participants navigated a rich and naturalistic visual environment. Then, on successive days, participants were exposed to optic flow in a more abstract visual environment, and strength of the optic flow was successively increased by increasing the visual contrast of the scene, because strength of optic flow and the resulting vection are thought to be major causes of VR sickness. Sickness measures decreased on successive days, indicating that adaptation was successful. On the final day, participants were again exposed to the rich and naturalistic visual environment, and the adaptation was maintained, demonstrating that it is possible for adaptation to transfer from more abstract to richer and more naturalistic environments. These results demonstrate that gradual adaptation to increasing optic flow strength in well-controlled, abstract environments allows users to gradually reduce their susceptibility to sickness, thereby increasing VR accessibility for those prone to sickness.

5.
IEEE Trans Vis Comput Graph ; 26(6): 2315-2334, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30575541

RESUMO

Virtual reality (VR) has enjoyed significant popularity in recent years. Where navigation has been a fundamental appeal of 3D applications for decades, facilitating this in VR has been quite a challenge. Over the past decades, various virtual locomotion techniques (VLTs) have been developed that aim to offer natural, usable and efficient ways of navigating VR without inducing VR sickness. Several studies of these techniques have been conducted in order to evaluate their performance in various study conditions and virtual contexts. Taxonomies have also been proposed to either place similar techniques in meaningful categories or decompose them to their underlying design components. In this survey, we aim to aggregate and understand the current state of the art of VR locomotion research and discuss the design implications of VLTs in terms of strengths, weaknesses and applicability.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33791686

RESUMO

As virtual reality (VR) garners more attention for eye tracking research, knowledge of accuracy and precision of head-mounted display (HMD) based eye trackers becomes increasingly necessary. It is tempting to rely on manufacturer-provided information about the accuracy and precision of an eye tracker. However, unless data is collected under ideal conditions, these values seldom align with on-site metrics. Therefore, best practices dictate that accuracy and precision should be measured and reported for each study. To address this issue, we provide a novel open-source suite for rigorously measuring accuracy and precision for use with a variety of HMD-based eye trackers. This tool is customizable without having to alter the source code, but changes to the code allow for further alteration. The outputs are available in real time and easy to interpret, making eye tracking with VR more approachable for all users.

7.
Oecologia ; 190(1): 99-113, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31076848

RESUMO

There are surprisingly few field studies on the role of invasive species on parasite infection patterns in native hosts. We investigated the role of invasive Pacific oysters (Magallana gigas) in determining parasite infection levels in native blue mussels (Mytilus edulis) in relation to other environmental and biotic factors. Using hierarchical field sampling covering three spatial scales along a large intertidal ecosystem (European Wadden Sea), we found strong spatial differences in infection levels of five parasite species associated with mussels and oysters. We applied mixed models to analyse the associations between parasite prevalence and abundance in mussels and oysters, and 12 biological and environmental factors. For each parasite-host relationship, an optimal model (either a null, one-factor or two-factor model) was selected based on AIC scores. We found that the density of invasive oysters contributed to three of the 12 models. Other biological factors such as host size (six models), and the density of target or alternative host species (five models) contributed more frequently to the best models. Furthermore, for parasite species infecting both mussels and oysters, parasite population densities were higher in native mussels, attributed to the higher densities of mussels. Our results indicate that invasive species can affect parasite infection patterns in native species in the field, but that their relative contribution may be further mediated by other biological and environmental parameters. These results stress the usefulness of large-scale field studies for detailed assessments of the mechanisms underlying the impacts of invasive species on native host communities.


Assuntos
Mytilus edulis , Ostreidae , Doenças Parasitárias , Unionidae , Animais , Ecossistema
8.
Displays ; 58: 12-19, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32863474

RESUMO

A primary cause of simulator sickness in head-mounted displays (HMDs) is conflict between the visual scene displayed to the user and the visual scene expected by the brain when the user's head is in motion. It is useful to measure perceptual sensitivity to visual speed modulation in HMDs because conditions that minimize this sensitivity may prove less likely to elicit simulator sickness. In prior research, we measured sensitivity to visual gain modulation during slow, passive, full-body yaw rotations and observed that sensitivity was reduced when subjects fixated a head-fixed target compared with when they fixated a scene-fixed target. In the current study, we investigated whether this pattern of results persists when (1) movements are faster, active head turns, and (2) visual stimuli are presented on an HMD rather than on a monitor. Subjects wore an Oculus Rift CV1 HMD and viewed a 3D scene of white points on a black background. On each trial, subjects moved their head from a central position to face a 15° eccentric target. During the head movement they fixated a point that was either head-fixed or scene-fixed, depending on condition. They then reported if the visual scene motion was too fast or too slow. Visual speed on subsequent trials was modulated according to a staircase procedure to find the speed increment that was just noticeable. Sensitivity to speed modulation during active head movement was reduced during head-fixed fixation, similar to what we observed during passive whole-body rotation. We conclude that fixation of a head-fixed target is an effective way to reduce sensitivity to visual speed modulation in HMDs, and may also be an effective strategy to reduce susceptibility to simulator sickness.

9.
J Anim Ecol ; 84(2): 554-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25283546

RESUMO

Models relating intake rate to food abundance and competitor density (generalized functional response models) can predict forager distributions and movements between patches, but we lack understanding of how distributions and small-scale movements by the foragers themselves affect intake rates. Using a state-of-the-art approach based on continuous-time Markov chain dynamics, we add realism to classic functional response models by acknowledging that the chances to encounter food and competitors are influenced by movement decisions, and, vice versa, that movement decisions are influenced by these encounters. We used a multi-state modelling framework to construct a stochastic functional response model in which foragers alternate between three behavioural states: searching, handling and moving. Using behavioural observations on a molluscivore migrant shorebird (red knot, Calidris canutus canutus), at its main wintering area (Banc d'Arguin, Mauritania), we estimated transition rates between foraging states as a function of conspecific densities and densities of the two main bivalve prey. Intake rate decreased with conspecific density. This interference effect was not due to decreased searching efficiency, but resulted from time lost to avoidance movements. Red knots showed a strong functional response to one prey (Dosinia isocardia), but a weak response to the other prey (Loripes lucinalis). This corroborates predictions from a recently developed optimal diet model that accounts for the mildly toxic effects due to consuming Loripes. Using model averaging across the most plausible multi-state models, the fully parameterized functional response model was then used to predict intake rate for an independent data set on habitat choice by red knot. Comparison of the sites selected by red knots with random sampling sites showed that the birds fed at sites with higher than average Loripes and Dosinia densities, that is sites for which we predicted higher than average intake rates. We discuss the limitations of Holling's classic functional response model which ignores movement and the limitations of contemporary movement ecological theory that ignores consumer-resource interactions. With the rapid advancement of technologies to track movements of individual foragers at fine spatial scales, the time is ripe to integrate descriptive tracking studies with stochastic movement-based functional response models.


Assuntos
Charadriiformes/fisiologia , Animais , Comportamento Apetitivo , Bivalves , Ecossistema , Comportamento Alimentar , Locomoção , Mauritânia , Modelos Estatísticos , Comportamento Predatório
10.
PLoS One ; 9(5): e98075, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847717

RESUMO

Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.


Assuntos
Migração Animal , Estações do Ano , Aves Canoras , África Subsaariana , Animais , Isótopos de Carbono/análise , Deutério/análise , Plumas/química , Isótopos de Nitrogênio/análise
11.
J Anim Ecol ; 79(4): 747-56, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20337758

RESUMO

1. Habitat selection models usually assume that the spatial distributions of animals depend positively on the distributions of resources and negatively on interference. However, the presence of conspecifics at a given location also signals safety and the availability of resources. This may induce followers to select contiguous patches and causes animals to cluster. Resource availability, interference and attraction therefore jointly lead to self-organized patterns in foraging animals. 2. We analyse the distribution of foraging shorebirds at landscape level on the basis of a resource-based model to establish, albeit indirectly, the importance of conspecific attraction and interference. 3. At 23 intertidal sites with a mean area of 170 ha spread out over the Dutch Wadden Sea, the spatial distribution of six abundant shorebird species was determined. The location of individuals and groups was mapped using a simple method based on projective geometry, enabling fast mapping of low-tide foraging shorebird distributions. We analysed the suitability of these 23 sites in terms of food availability and travel distances to high tide roosts. 4. We introduce an interference sensitivity scale which maps interference as a function of inter-individual distance. We thus obtain interference-insensitive species, which are only sensitive to interference at short inter-individual distances (and may thus pack densely) and interference-sensitive species which interfere over greater inter-individual distances (and thus form sparse flocks). 5. We found that interference-insensitive species like red knot (Calidris canutus) and dunlins (Calidris alpina) are more clustered than predicted by the spatial distribution of their food resources. This suggests that these species follow each other when selecting foraging patches. In contrast, curlew (Numenius arquata) and grey plover (Pluvialis squatarola), known to be sensitive to interference, form sparse flocks. Hence, resource-based models have better predictive power for interference-sensitive species than for interference-insensitive species. 6. It follows from our analysis that monitoring programmes, habitat selection models and statistical analyses should also consider the mechanisms of self-organization.


Assuntos
Aves , Comportamento Alimentar , Animais , Demografia , Modelos Teóricos , Países Baixos , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...